Fine tuning is dead. Long live fine tuning?

The siren's song of LLMs

Who am I

- Data Scientist at Zipcar
 - Trained models for demand prediction
- Led an ML education program about applied ML
 - Mentored 100+ fellows training models in NLP/CV
- Wrote a practical guide to building ML applications
 - Discusses model training in depth
- Staff ML Engineer at Stripe
 - Trained and improved fraud models, built some of the earliest MLOps
- Research Engineer at Anthropic
 - Finetuned Claude models, now working on interpretability

This talk = my opinion

I've been training models for 10 years

I don't recommend it

- 1. Trends
- 2. Performance
- 3. Difficulty

Trends

"Be afraid of anything that sounds cool"

Train models

What you want to do

Write SQL queries

Use deep learning

What you want to do

Use XGBoost

Invent a new loss function

What you want to do

Clean your data

Train your own LLM

What you want to do

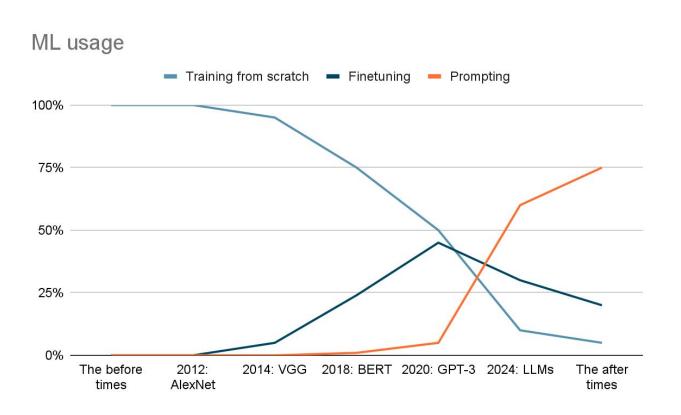
Make better prompts

Finetune a LLM

What you want to do

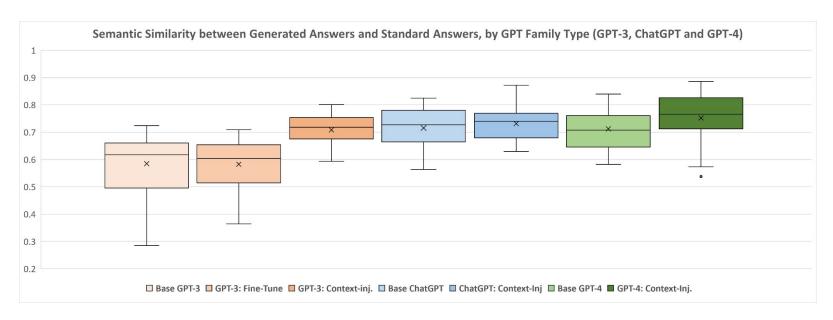
Make better prompts

The most productive way to leverage machine learning is changing



Performance

For most cases, finetuning does worse than prompts/RAG



Fine-tuning vs Context-Injection (RAG)

As models get bigger, the tradeoff gets worse

- Most of the gains come from RAG
- The impact of finetuning disappears for large models

		-FT/	-FT/	+FT/	+FT/
FT	QA	-RAG	+RAG	-RAG	+RAG
FlanT	'5-small		1		
PEFT	E2E			5.53	22.91
	Prompt	3.05	26.13	7.01	49.85
Full	E2E 3.03 20.1.	20.13	6.35	10.21	
rull	Prompt			8.52	49.88
FlanT	5-base				
PEFT	E2E	6.72	63.13	6.94	51.61
	Prompt			9.92	63.29
Full	E2E			8.63	24.17
	Prompt			11.41	60.26
FlanT	'5-large				
PEFT	E2E	8.41	58.12	8.22	55.26
	Prompt			12.15	61.71
Full	E2E			16.23	13.31
	Prompt			13.91	58.60

Table 2: Accuracy of base and fine-tuned models, both with and without RAG. The RAG results presented are based on ideal retrieval.

<u>Fine Tuning vs. Retrieval Augmented Generation for Less Popular Knowledge</u>

Although it isn't a clear win even for small models

	Base model	Base model + RAG	FT-reg	FT-par	FT-reg + RAG	FT-par + RAG
Mistral 7B	0.481	0.875	0.504	0.588	0.810	0.830
Llama2 7B	0.353	0.585	0.219	0.392	0.326	0.520
Orca2 7B	0.456	0.876	0.511	0.566	0.820	0.826

Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs

Finetuning is not the solution for domain knowledge

Model	Fine-tuned	Fully correct (%)	+RAG
Llama-2-chat 13B		32%	49%
Vicuna		28%	56%
GPT-4		36%	60%
Llama2 13B	✓	29%	49%
GPT-4	\checkmark	45%	61%

Table 20: Percent of answers that were fully correct, for base and fine-tuned models with and without RAG.

RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture

You are aiming at a moving target

How it started

Finance-Specific	BloombergGPT	GPT-NeoX	OPT-66B	BLOOM-176B
Financial Tasks	62.51	51.90	53.01	54.35
Bloomberg Tasks (Sentiment Analysis)	62.47	29.23	35.76	33.39

General-Purpose	BloombergGPT	GPT-NeoX	OPT-66B	BLOOM-176B	GPT-3
MMLU	39.18	35.95	35.99	39.13	43.9
Reading	61.22	42.81	50.21	49.37	67.0
Comprehension					
Linguistic Scenarios	60.63	57.18	58.59	58.26	63.4

BloombergGPT: A Large Language Model for Finance

You are aiming at a moving target

How it's going

Model	FinQA	ConvFinQA
ChatGPT(0)	48.56	59.86
ChatGPT(3)	51.22	/
ChatGPT (CoT)	63.87	
GPT-4(0)	68.79	76.48
GPT-4(3)	69.68	
GPT-4 (CoT)	78.03	
BloombergGPT(0)	1	43.41
GPT-NeoX(0)	1	30.06
OPT66B(0)	/	27.88
BLOOM176B(0)	/	36.31
FinQANet(fine-tune)	68.90	61.24
Human Expert	91.16	89.44
General Crowd	50.68	46.90

Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? A Study on Several Typical Tasks

Difficulty

Optimal machine learning: average time spent per task

Not pictured because it doesn't/shouldn't happen:

- Cool architecture research

80%: Collect a dataset

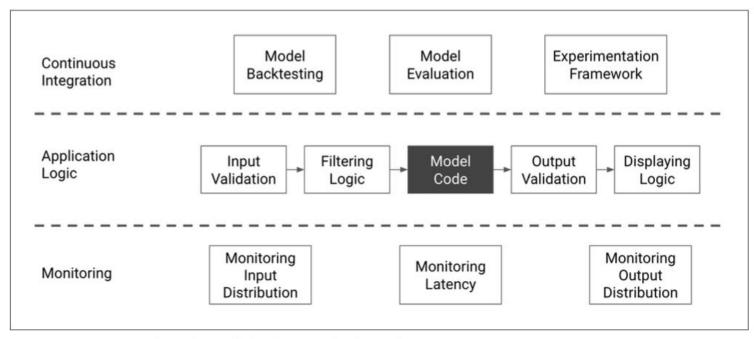
Clean it, enrich it, label it

18% Serving and monitoring

Build a scalable serving infra, drift detection, etc.

2% Debug ML issues
GPU OOMs, convergence, gradient spikes

Machine learning is hard even if you don't train the models!



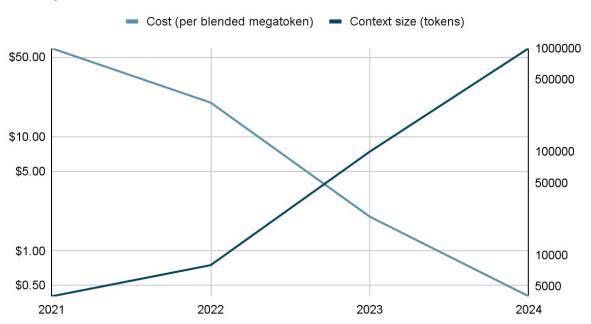
Building ML Powered Applications

You have better things to do!

- Building an evaluation set that is:
 - representative, large, and easy to run
- Spending days working on prompts and RAG
- Investing in monitoring and error detection

Skate to where the puck is going

LLM price and context size



A surprisingly balanced conclusion

Keep in mind that:

- Finetuning is:
 - expensive and complex
 - has become less valuable
 - often underperforms simpler approaches
- Models are continuously becoming:
 - cheaper
 - smarter
 - faster
 - longer context

So:

- Always start with:
 - prompting
 - making a train/test set
 - rag
- Treat finetuning as a niche/last resort solution
 - like cloud vs on prem