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How people deal with OOMs

RuntimeError: 
CUDA out of 
memory

Smaller batch size
Smaller model

https://en.wikipedia.org/wiki/Bazooka#/media/File:Soldier_with_Bazooka_M1.jpg 

https://en.wikipedia.org/wiki/Bazooka#/media/File:Soldier_with_Bazooka_M1.jpg


VRAM

24 GB of VRAM 40 or 80 GB of VRAM



Memory crash course

Llama 7B has 7B parameters in fp16

Each parameter is 2 bytes so parameters is 14GB

Gradients memory = parameter memory

Adam Optimizer State = 2 * parameter memory

Total = 14GB + 14GB + 28GB = 56GB



Larger batch sizes and context lengths

Bottleneck is almost always Activations that’s 

why Flash Attention is important

Paper math is great but Papers don’t tell us when 

we’re wrong 

https://dev-discuss.pytorch.org/t/how-to-measu

re-memory-usage-from-your-model-without-run

ning-it/2024  

https://dev-discuss.pytorch.org/t/how-to-measure-memory-usage-from-your-model-without-running-it/2024
https://dev-discuss.pytorch.org/t/how-to-measure-memory-usage-from-your-model-without-running-it/2024
https://dev-discuss.pytorch.org/t/how-to-measure-memory-usage-from-your-model-without-running-it/2024


Let’s optimize the bottleneck!



Ok let’s take a look at params

14 GB at fp16

Quantize to 4 bit

3.5 GB at int4
Each int4 needs ½ byte*



Hello quantization



torch.compile

https://github.com/pytorch/ao 

https://github.com/pytorch/ao


Back to gradients

Quantize to 4 bit



Full finetuning vs LORA

weight += (lora_B @ lora_A) * scaling



QLoRA

All winning entries for https://llm-efficiency-challenge.github.io/ used QLoRA

https://llm-efficiency-challenge.github.io/


Implementing QLoRA

4000 lines of CUDA code 
https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu 

https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu


Forgot to mention some details

● Weights aren’t in int4 but NF4 which is closer to a normal distribution

● Can’t matrix multiply NF4 tensors, need to dequantize and matmul

● Remember how important the max is when doing the quant? Well you can’t use the 

same max for everything otherwise you’re too sensitive to outliers

● Quantization typically done in blocks with independent scales

● QLoRA quantizes the scales, double quantization!

● 
● Let’s look at some code 

https://github.com/pytorch/ao/blob/main/torchao/dtypes/nf4tensor.py 

https://github.com/pytorch/ao/blob/main/torchao/dtypes/nf4tensor.py


Bitpacking

PyTorch supports down to int8 https://pytorch.org/docs/stable/tensors.html 

Elements of a tensor need to be byte (8 bit) addressable

C++ is the same a bool takes 8 bits of memory

https://pytorch.org/docs/stable/tensors.html


But what if we wanted to implement a real Tensor

Probably feature PyTorch devs are most excited about 

https://github.com/albanD/subclass_zoo/ 

We can define what matrix multiplication over NF4 means using Python 

https://github.com/pytorch/ao/pull/37 by @drisspg

return F.linear(input, weight.to(input.dtype))

But we can also define how FSDP would handle an NF4 Tensor 

https://github.com/pytorch/ao/pull/150 i.e aten.split by @weifengpy

https://pytorch.org/docs/stable/tensors.html 

https://github.com/albanD/subclass_zoo/
https://github.com/pytorch/ao/pull/37
https://github.com/pytorch/ao/pull/150
https://pytorch.org/docs/stable/tensors.html


One GPU was not enough…

* DISCLAIMER: the model 
memory to the left does 
not include literally 
everything that’ll take up 
memory during training, 
but is meant to be 
illustrative of the 
significant pieces.



But what if you had 2?



Let’s start with the obvious: parallelize the data (batch size)

Sharding the batch size halves the activations. Everything else is duplicated.



Let’s start with the obvious: parallelize the data (batch size)

Note that we need to sync/sum the grads before the optim step with an all-reduce!

In general, techniques to lower memory require additional compute and management.



But what if that wasn’t enough?

What else can we do?



Let’s keep parallelizing! Shard the params too.

Sharding the params will in turn reduce gradient and optimizer memory.



Congrats you have discovered FSDP! - fully sharded data parallel

FSDP will bring in only a layer’s weights at a time to avoid using too much memory.

As a result, we need more collectives to shuffle tensors between GPUs.



A slightly more accurate depiction of memory for a step in FSDP



What constitutes a layer in FSDP?

Every nn module is a tree of 

more nn modules.

The user’s wrapping policy 

determines what gets 

treated as its own “layer”.

This depicts a wrapping 

policy where 

TransformerDecoderLayer 

and Linear are specified.



What you decide to wrap influences memory usage (and more)

The more “fine-grained” 

you wrap, the smaller 

that dotted memory will 

be.

Smaller blobs = less 

memory needs to be 

all-gathered at a time.



But what if after all your tweaking, you still OOM?

What else can we do?



In comes CPU offloading!
Don’t forget about the 

CPU!

Just keep parameters on 

the CPU and move them to 

the GPU when computing 

forward + backward.

Note that the optimizer 

update will be done on 

CPU, so the optim state 

lives there too. 



None of this is quite new…right?

I mean…okay, yes, FSDP has existed for a while, with all the features mentioned above.

And wonderful people have been using these features, like Answer.AI who built 

fsdp_qlora with FSDP x bnb to compose qLoRA and distributed.

BUT we’ve recently come out with per-parameter FSDP!

https://github.com/AnswerDotAI/fsdp_qlora/tree/main?tab=readme-ov-file


What is per-parameter FSDP?

Let’s start with the status quo: 

flat-parameter FSDP1. Say you 

have these params to shard 

across our two GPUs:
t1: (2, 3)
t2: (3, 3)
t3: (2, 2)

Goal: make all-gather efficient

Constraint: NCCL requires each 

GPU contribute same-size Tensors



FlatParam FSDP



FlatParam FSDP

Each chunk is smooshed 
into one Tensor, which we 
call a FlatParameter.

This approach has its pros:
● Contiguous memory
● One can use views to 

retrieve t1, t2, t3 (vs 
copy’s)

but also its cons…



Another way to shard, dubbed “per parameter”

Remember you have these 

params to shard across our GPUs:
t1: (2, 3)
t2: (3, 3)
t3: (2, 2)

We can slice each parameter in 

half over dimension 0, and pad 

uneven slices.

This way, every param has 

representation on every machine.



Per-param FSDP2

Each chunk is many 
Tensors, each a DTensor (D 
is for distributed).

This approach has a major 
pro: each param maintains 
its own identity (dtype, 
subclass, metadata).

BUT does require extra 
copies ($$$ > views) during 
All-Gather.



Why the extra 
copies?



Why do we think the “per-parameter-ness” is worth it?

vs

FlatParameter forces t1, t2, and t3 
to share dtype, requires_grad as it is 
one Tensor.

In per-params, t1, t2, and t3 here 
can be themselves! They can have 
their own dtype, requires_grad.



Why do we think the “per-parameter-ness” is worth it?

vs

Think quantization: what if you wanted t2 to be uint8 + t1 to remain fullsized bf16?
Think parameter freezing/LoRA:  what if t2 is a frozen base weight while t3 is the 
LoRA adapter?

You’d have to hack around FSDP1 concepts you’d get for free in FSDP2.



FSDP2 also has other cool pros, like deterministic memory

This is another major implementation change that actually guarantees deterministic 

memory:

But it’ll take another lecture to explain xD, for more details, see 

https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspecti

ve/1486

Only 2 layers worth of memory will coexist at a time.

https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486
https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486


Why do we think the “per-parameter-ness” is worth it?

Well, it… 

1. just makes more sense
a. Every parameter is an evenly sliced version of itself in FSDP2 

b. Whereas in FSDP1, some parameters are entirely on 1 machine while others could be split across 

arbitrarily. Plus, every parameter belonging to a FlatParam must share dtype and subclass and 

requires_grad.

2. widens what could be wrapped by FSDP into a layer

3. unlocks param-wise optimizers, like AdaFactor

4. composes with other distributed parallelisms (TP, PP) through DTensor, as tensor 

structure is maintained



FSDP2 also has other cool pros, like deterministic memory

Due to how FSDP1 implemented its rate limiter on CPU, it couldn’t actually guarantee:

For example, using CPU offloading sometimes caused more memory usage!

FSDP2 moved the burden of rate limiting from CPU to CUDA events, so now this 

guarantee can actually be met :D

For more details, see 

https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspecti

ve/1486

Only 2 layers worth of memory will coexist at a time.

https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486
https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486


Our implementation overlaps communication with computation

This way, the all-gathers are imperceptible in terms of runtime!

Note that this requires prefetching the next layer’s parameters so that they could be 
ready by the time its compute starts.



But we do it methodically to avoid peaking memory

Desired guarantee: only 2 layers worth of memory will coexist at a time.



So let’s take FSDP2 out for a swim

Answer.AI had already successfully composed FSDP1 with QLoRA, but only after expertly 

maneuvering through its limitations.

e.g.,  “FSDP was not copying the quantization information needed for each shard to use the model! That’s because 

FSDP is quite opinionated on the subset of data it will sync between GPUs”

We want to offer cleaner, more general solutions to composing distributed with low 

precision parameters, so why not start here, with FSDP2 x NF4?

So we did! https://github.com/pytorch/torchtune/pull/909 

Cleaner and more composable is always good, but how do we do on perf? Let’s find out!

https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html
https://github.com/pytorch/torchtune/pull/909


The plan

1. Get some GPUs

2. Run a benchmark on Answer.AI’s train.py

3. Run the same benchmark on Wei’s torchtune recipe

4. Wait…were those actually the same benchmark?

5. Make sure what I’m measuring was 🍎 ⇔ 🍏 and not 🍎 ⇔ 🍊
6. Record the gaps

7. Investigate and fill the gaps if possible



Getting some GPUs

I rented myself a dual setup on vast.ai

● 2 RTX 3090s, 24 GB VRAM each

● 117 GB RAM

● 12 cores                            => required torch.set_num_threads(8)

● PCIE 3.0 16x, with 9.0 GB/s bandwidth each

● CUDA 12.2



Running a benchmark on Answer.AI’s train.py

Thanks Answer.AI peeps on CUDA MODE for sending me benchmarks to try!

batch size peak memory runtime for a step

8 15.03 GiB 13.9s

10 18.05 GiB 16.9s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

12 21.06 GiB 19.9s

+ OOM N/A

batch size peak memory runtime for a step

8 12.88 GiB 14.0s

10 15.89 GiB 17.5s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

12 18.91 GiB 20.9s

14 21.92 GiB 23.6s

+ OOM N/A

llama2-7B, context length 2048 llama2-7B, context length 2048, with CPU offloading



Running a benchmark on Answer.AI’s train.py

I decided to focus on just one of these to do an apples to apples comparison.

python train.py --model_name meta-llama/Llama-2-7b-hf --batch_size 8 
--context_length 2048 --train_type qlora --use_gradient_checkpointing True 
--reentrant_checkpointing True --dataset dummy --dataset_samples 48

batch size peak memory runtime for a step

8 15.03 GiB 13.9s

10 18.05 GiB 16.9s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

12 21.06 GiB 19.9s

+ OOM N/A

batch size peak memory runtime for a step

8 12.88 GiB 14.0s

10 15.89 GiB 17.5s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

12 18.91 GiB 20.9s

14 21.92 GiB 23.6s

+ OOM N/A

llama2-7B, context length 2048 llama2-7B, context length 2048, with CPU offloading



Running the same benchmark on Wei’s torchtune recipe

tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config 

recipes/configs/dev/llama2/7B_qlora_fsdp2.yaml * with tweaks to align the configs

Since FSDP2 is stricter about memory and requires extra copies, it would be easy to chalk 

up the differences above as expected.

But, nah, we have to be diligent! And very quickly, one glance at the trace revealed 

troubling shenanigans.

batch size peak memory runtime for a step

train.py 8 12.88 GiB 14.0s

torchtune 8 12.60 GiB 16.5s

https://github.com/pytorch/torchtune/blob/1fa1f04baf124c074dcd93831fa38c8b657af1e9/recipes/configs/dev/llama2/7B_qlora_fsdp2.yaml


Wait…are those actually the same benchmark?

Spot the difference!



Wait…are those actually the same benchmark?

Why were the optimizer steps so much bigger in the torchtune trace?



Wait…are those actually the same benchmark?
train.py trace      torchtune trace

https://drive.google.com/file/d/1ObfUUySBwuaCSLMXRxFiM1w7XYMebxvB/view?usp=drive_link
https://drive.google.com/file/d/1BpdlZZ55746IHcifho2u2okJQ1ihr8dY/view?usp=drive_link


Wait…are those actually the same benchmark?

Aha! torchtune was training more parameters than Answer.AI’s train.py config.
448 - 384 = 64 extra params! Any guesses where they came from?



Wait…are those actually the same benchmark?

answer is on next slide :D

Spot the difference!



Wait…are those actually the same benchmark?

torchtune LoRA-fied the output_proj when the train.py did not.
LoRA-fying = adding 2 low rank adapters to the o of every qkv.
32 TransformerDecoderLayers * 2 more params each = 64 extra params to train.

Spot the difference!



Making sure what I’m measuring is 🍎 ⇔ 🍏 and not 🍎 ⇔ 🍊
I took a pause cuz it wasn’t going to be fruitful if the items getting measured weren’t 

sufficiently aligned!

Steps I took:

● Stopped LoRA-fying the output_proj in my torchtune recipe

● Changed FSDP2 wrapping policy to wrap the same layers

● Replicated the same “dummy” dataset for my benchmark

● Took another pass ensuring max seq len + other hyperparams for model construction 

were the same



Making sure what I’m measuring is 🍎 ⇔ 🍏 and not 🍎 ⇔ 🍊
I then ran the benchmark after my changes…and FSDP2 x NF4 still looked mighty slow.

Even though it may feel like we took a mini step back, we’ve made a giant leap unblocking 

our official first step: understanding the problem (gaps).

I could finally start a very long game of Spot the Difference. 

train.py trace        torchtune trace                  

batch size peak memory runtime for a step

train.py 8 12.88 GiB 14.0s

torchtune 8 10.70 GiB 16.6s

https://drive.google.com/file/d/1ObfUUySBwuaCSLMXRxFiM1w7XYMebxvB/view?usp=drive_link
https://drive.google.com/file/d/1HcfveSyEGfaKCTYkHCYP7u5pDxZV48Ob/view?usp=drive_link


Recording the gaps

I first did a survey of the land, and derived this chart:

We see that we should focus on the forward and the optimizer step kernels.



Recording the gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Investigating and filling the gaps if possible

lesgo

traces: 

https://drive.google.com/drive/u/3/folders/1HmGNC4v4L5nXhtdDMVCpUBrme1ELp-2C 

https://drive.google.com/drive/u/3/folders/1HmGNC4v4L5nXhtdDMVCpUBrme1ELp-2C


Gap: the optimizer step is still slower

Understanding why:

● DTensor overhead
● parameter is not necessarily contiguous

Solution: used fused! (thanks Intel)



Gap filled: the optimizer step is now faster

Solution: used fused! (thanks Intel)

● avoid DTensor overhead by only dispatching 1 fused kernel!

● leverage vectorization

● goes from ~1s -> 120ms, speeding up 8x



The gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Gap: the 2nd AG was 5ms longer

Check the all-gather input arguments! 

Realize that 25,300,992 bf16s != 64,646,208 Bytes

In FSDP1, print out _fqns of a FlatParameter. In FSDP2, print all_gather_inputs.

Lining up the parameters revealed…

https://github.com/pytorch/pytorch/blob/f600faf2480ddd6600ad88fbfc5dd28da132d61d/torch/distributed/_composable/fsdp/_fsdp_param.py#L515


Gap understood: the 2nd AG was much larger

Why the heavy load?

● our NF4 all-gathers the NF4 metadata whereas bnb Params4bit does not
● more significantly, after opting out of LoRA, our output_proj remained frozen but full 

sized. train.py froze their output_proj too, but quantized it



Gap to be filled: detangle the q from qLoRA

Why the heavy load?

● our NF4 all-gathers the NF4 metadata whereas bnb Params4bit does not
○ This is intended! FSDP2 allows NF4Tensor subclass to decide which of its inner tensors are all-gathered

● more significantly, after opting out of LoRA, our output_proj remained frozen but full 

sized. train.py froze their output_proj too, but quantized it.
○ This is not intended!

○ This is a next step for torchtune to allow base weights to be quantized even if they opt out of LoRA

https://github.com/pytorch/ao/blob/main/torchao/dtypes/nf4tensor.py#L801


The gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Understanding why:

● NF4Tensor overrides the mm in order to dequantize before calling the gemm

● bnb has a CUDA kernel for the dequantization work

Gap: additional overhead right before the gemms



Solutions:

● A next step is to leverage torch.compile. I did try it, but it does not play well with 

activations checkpointing at the moment

● Another next step is to package and use the Triton kernels that Driss wrote

Gap to be filled: fuse LinearNF4 overhead



The gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Gap: differing ops before sdpa (costing us 6ms per layer!)

This gap is the most boring of them all: torchtune and the default LLaMa2 config simply 

use different RoPE algorithms.

● torchtune uses the original Meta algorithm with no numerical differences.

● the default LlamaRotaryEmbedding is 2-3x faster (for our trace 6ms faster) but is not 

the same numerically.

Solution:

● A next step is for torchtune to offer more options for more optimized but less faithful 

Embedding algos if desired.



The gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Gap: exposed AGs/mem H2Ds

We wonder: why is the left side Memcpy hidden in FSDP1, but very exposed in FSDP2?

Answer: the stricter memory restraints!

● Memcpy is used to bring offloaded params from CPU to GPU

● FSDP2 is guaranteeing the constraint that only 2 layers of params will be allowed at a 

time by having the Memcpy wait as well.



Gap: exposed AGs/mem H2Ds

Note that the problem here isn’t that FSDP2 is too strict. It’s that the computation is too 

small to properly hide the communication!

Solution: wrap more granularly. Have bigger layers.

too tiny!



We want a new wrapping policy:

This new wrapping policy is only possible with FSDP2!

As now, both NF4Tensors and plain Tensors can coexist in 1 layer.



Side note: this is very easy to do in FSDP2



Gap filled: hidden AGs/mem H2Ds

Solution: wrap more granularly. Have bigger layers.

 
Now both are overlapped! final_torchtune_trace.json

https://drive.google.com/file/d/1yJ176PyAyiMJLI07PL5Mhq-_E7-q2z-B/view?usp=drive_link


The gaps

the optimizer step is still slower                               vs 

 vs                                                                   the 2nd AG was 5ms longer 

additional overhead right before the gemms           vs 

      vs              differing ops before sdpa

exposed AGs/mem H2Ds     vs



Positive gap: how come torchtune uses less memory?

One, yes, FSDP2 has better guarantees. But here, it’s that torchtune frees the loss early! 

https://github.com/pytorch/torchtune/pull/1046


Positive gap: how come torchtune uses less memory?

Zooming in, the gap is the size of the loss.



torchtune can get up to bs=16 for llama2-7b, 2048 context len

batch size peak memory runtime for a step

8 10.7 GiB 14.8s

10 13.2 GiB 18.2s

12 15.7 GiB 21.7s

14 18.3 GiB 25.3s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

16 20.8 GiB 28.8s

+ OOM N/A

batch size peak memory runtime for a step

8 12.88 GiB 14.0s

10 15.89 GiB 17.5s

below needs 
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

12 18.91 GiB 20.9s

14 21.92 GiB 23.6s

+ OOM N/A

llama2-7B, context length 2048, with CPU offloading

train.py torchtune



Try this out in torchtune!

https://github.com/pytorch/torchtune 

though HUGE DISCLAIMER checkpointing is not working yet

https://github.com/pytorch/torchtune


The rest of the team

@drisspg: Driss wrote the original NF4 tensor implementation

@awgu: Andrew is the main architect of FSDP2

@weifengpy: Wei showed how to compose new dtypes w/ FSDP2

@rohan-varma/@ebsmothers: wrote the LoRA recipes and merged code in tune



Thanks!

Implement new dtypes that work with compile and FSDP: https://github.com/pytorch/ao

Compile them: https://pytorch.org/docs/main/torch.compiler 

Author them as subclasses so they work like real PyTorch tensors: https://github.com/albanD/subclass_zoo/ 

Go from 1 GPU to N GPUs with FSDP2: https://github.com/pytorch/pytorch/issues/114299 

End to end finetuning examples: https://github.com/pytorch/torchtune 

End to end training examples: https://github.com/pytorch/torchtitan 

And remember to profile your memory: https://pytorch.org/blog/understanding-gpu-memory-1/ 

If you have any questions reach out to us on Discord. 

If you’re doing research at the intersection of quantization and distributed we’d loooove to hear from you

https://github.com/pytorch/ao
https://pytorch.org/docs/main/torch.compiler
https://github.com/albanD/subclass_zoo/
https://github.com/pytorch/pytorch/issues/114299
https://github.com/pytorch/torchtune
https://github.com/pytorch/torchtitan
https://pytorch.org/blog/understanding-gpu-memory-1/

