Beyend Explaining the Basics
Of

Retrieval (Augmented Generation)

MVPs W|th a twist

eeeeee
Jun {10 11}th 2024

About Me

I do R&D at Answer.Al under Jeremy Howard, with other awesome people.

Prior to joining Answer.Al, I worked in a variety of roles in NLP/Information Retrieval,
eventually moving to consulting.

I made the RAGatouille library, which makes ColBERT friendlier to use, and also
maintain the rerankers lib (more on that in a few slides!)

If you know me, it’s most likely via twitter, at @bclavie.

https://github.com/bclavie/ragatouille
https://github.com/answerdotai/rerankers
https://x.com/bclavie

Topics

Opverall theme: Loose presentation of the core Retrieval Basics, as they should exist in all RAG
pipelines:

- Rant: Retrieval was not invented in December 2022

- The “compact MVP”: Bi-encoder single vector embeddings and cosine similarity are all
you need

- What’s a cross-encoder and why do I need it?

- Tf-idf and full text search is so 2600s 19968s 1986s 1970s, there’s no way it’s still relevant,
right?

- Metadata Filtering: when not all content is potentially useful, don’t make it harder than it
needs to bel!

- “Compact MVP++” : All of the above in 30 lines or less.

- Bonus: Yes, one vector is good, but how about many of them?

> Topics

What I won’t be talking about today:

- 2 How to systematically monitor and improve RAG systems (See Jason & Dan’s
upcoming course for that!)

< Evaluations: These are far too important to be covered quickly, and Jo Bergum
will be covering how to efficiently do them in his upcoming talk.

>{ Benchmarks/Paper references: in the interest of time & space, we’ll avoid big
scary Table 3. and Figure 2. in those slides (except once).

¢ An overview of all the best performing models

¢ Synthetic data and training

¢ All the approaches you could actually use (sparse models, ColBERT...), which
go beyond the very basics!

\

\

\

\

\

First, a quick rant

% Hamel Husain &

. @HamelHusain

\

RAG 1s not: RAG is another example of bloated jargon. This should just be "provide

A new paradigm relevant context"
- A framework

- An end-to-end system
- Something created by Jason Liu in
his endless quest for a Porsche

3:07 am - 23 May 2024 - 93.2K Views

O 92 07

- RAG is the act of stitching together Retrieval and Generation to ground the latter

- The Retrieval part comes from Information Retrieval, a very active field of
research

- The Generation part is what’s handled by LLMs

- “Good RAG” is made up of good components:

- Good retrieval pipeline
- Good generative model
- Good way of linking them up

The compact MVP

The most compact (& most common) deep retrieval pipeline boils down to a very
simple process:

%)), ///////////////
-—y/ st oaety

iz
—e? E ;jﬁ | rbes 1,“%;
i) /// /////////

e P) sentence_transformers SentenceTransformer
cas = "“’er/ model = SentenceTransformer("Alibaba-NLP/gte-base-en-v1.5")

wikipediaapti Wikipedia
wiki = Wikipedia('RAGBot/0.0', 'en')
_4>E?w*M3“”%3 doc = wiki.page('Hayao_Miyazaki').text
e | vector paragraphs = doc.split('\n\n")

Ember}r}mg

Documents /—> M odel

docs_embed = model.encode(paragraphs, normalize_embeddings=

w [Ewmbeddling CASCURELE query = "What was Studio Ghibli's first film?"
E3-Ed - &5 : - ings=Tre)

query_embed = model.encode(query, normalize_embeddings=

numpy np

_ similarities = np.dot(docs_embed, query_embed.T)

top_3_1idx = similarities.topk(3).indices.tolist()
most_similar_documents = [paragraphs[idx] idx top_3_1idx]

Cosine

s?milar?ty ——

Results

search

Wait, where’s the vector DB?

- The vector db in this example is*np.array

- A key point of using a vector DB (or an index) is to allow Approximate search, so
you don’t have to compute too many cosine similarities.

- You don’t actually need one to search through vectors at small scales: any modern
CPU can search through 100s of vectors in milliseconds.

7 - ik ’ Cosine
///WM/ % —

Bkl search
Model Gnto 1 ve_c‘to)

///// /////////

—_— Re_SU l'ts

Documents

Why are you calling embeddings “bi-encoders™?

- The representation method from the previous slides is commonly referred to as using
“bi-encoders”

- Bi-encoders are (generally) used to create single-vector representations. They
pre-compute document representations.

- Documents and query representations are computed entirely separately, they aren’t
aware of each other.

- Thus, all you need to do at inference is to encode your query and search for similar
document vectors

- This is very computationally efficient, but comes with retrieval performance tradeofs.

Reranking: The power of Cross-Encoders (& more!)

- So if documents & query being unaware of each other is bad, how do we fix it?

- The most common approach is using Cross-Encoders:

-Encoder

(Embe,d + Pool

///

ocuments

Simi lar"tl/

Cos ne.

SCO!‘C

e

Bi-Encoder
(Embe_d + Pool)

// W

Quen/

7

Similarity
Score

Jiini

Cross-Encoder

/ 2

Docume_n'ts

=

s is effecti ve_lc/ a binary classifier.
b l“tl/ of Beng The positive class is taken

Quen/

as the simi lar‘ty score

- However, It’s not computationa]ly realistic to compute query-aware document representations
for every single query-document pair, everytime a new query comes up (imagine doing that

against every Wikipedia paragraph!)

The World of Rerankers

- You might have also heard of other re-ranking approaches: RankGPT/RankLLM,
T5-based rerankers, etc...

- Their method differs but the core idea is the same: leverage a powerful but
computationally expensive model to score only a subset your documents, previously
retrieved by a more efficient model.

- There are many models for you to try out, some of them
API-based (Cohere, Jina...), some of them you can run
locally (such as mixedbread). Luckily, I have a library to

make that easy.

https://github.com/answerdotai/rerankers
https://github.com/answerdotai/rerankers

Compact Pipeline + Reranking

- With the addition of a re-ranking step, this is what your Retrieval pipeline now

looks like:

// i
Bi-Encoder %
Y (Embe,d + Pool) Cosine

////////A////////// similarity

<efs§xmfd e;; s
) ////

Results

Keyword Search: The Old Legend Lives On (Y/2)

\

Semantic search via embeddings is powerful, but compressing information from
hundreds of tokens to a single vector is bound to lose information.

Embeddings learn to represent information that is useful to their training queries.
This training data will never be fully representative, especially when you use the

model on your own data, on which it hasn’t been trained.

Additionally, humans love to use keywords. We have very strong tendencies to
notice and use certain acronyms, domain-specific words, etc...

To capture all this signal, you should ensure your pipeline uses Keyword search

Keyword Search: The Old Legend Lives On (2/2)

- Keyword search, also called “full-text search”, is built on old technology: BM25,
powered by tf-idf (a way of representing text and weighing down words that are
common)

- An ongoing joke is that information retrieval has progressed slowly because BM25
is too strong a baseline.

- BM25 is especially powerful on longer documents and documents containing a lot
of domain-specific jargon.

- Its inference-time compute overhead is virtually unnoticeable, and it’s therefore a
near free-lunch addition to any pipeline.

An arXiv-style Results Table to Praise BM25

Model (—) Lexical Sparse Dense

SCIDOCS 0.158

FEVER 0.753
Climate-FEVER 0.213
SciFact 0.665

Avg. Performance vs. BM25

0.124 0.126 0.162

0.353 0.596 0.714
0.066 0.082 0.201
0.630 0.582 0.675

-279% -20.3% +1.6%

0.077 0.122 0.149

0.562 0.669 0.700
0.148 0.198 0.228
0.318 0.507 0.643

-477% -74% -2.8%

Dataset (}) | BM25 | DeepC;I' SPAR'II'A docTSql:Eery | DPR ANC? TAS-? Results table from
MS MARCO 0.228 0.296 0.351 0.338 0.177 0.388' 0.408
TREC-COVID 0.656 0.406 0.538 0.713 0332 0.654 0481 } BEIR: A Heter ogeneous
BioASQ 0.465 0.407 0.351 0.431 0.127 0306 0.383 J »
NFCorpus 0.325 0.283 0.301 0.328 0.189 0237 0319 ! Benchmark for Zero-shot
NQ 0329 | 0188 0398 0.399 0474 0446 0463 0. Evaluation of Information
HotpotQA 0.603 0.503 0.492 0.580 0391 0456 0.584 X i
FiQA-2018 0.236 0.191 0.198 0.291 0.112 0295 0.300 i Retrieval Models (20 2])’
Signal-IM (RT) | 0330 | 0.269 0.252 0307 | 0155 0249 0.289)
TREC-NEWS 0.398 0.220 0.258 0.420 0.161 0382 0377 ! Thakur et al.
Robust04 0.408 0.287 0.276 0.437 0252 0392 0427
ArguAna 0.315 0.309 0.279 0.349 0.175 0415 0.429 !
Touché-2020 0.367 0.156 0.175 0.347 0.131 0240 0.162 . ThiS paper introduces BEIR
>

CQADupStack 0.299 0.268 0.257 0.325 0.153 0296 0314 } .
Quora 0789 | 0691 0630 0.802 0248 0852 0835 0. aka the retrieval part of
DBPedia | 0313 | 0177 0.314 0331 | 0263 0281 0.384 ! MTEB

| | | : :

| |

The TF-IDF MVP++

With text search and reranking, this is what your pipeline now looks like:

Y/ //////////////////////
// Bi-Encoder %
(Embe,d + Pool) %\
Cosine
/ B'_Enco‘*ef % simi|o\ﬁ“t£/
_

(Embed + Pool)
4//

%

search

iz

=
it eignted [
/ £ull ‘te)(t) Q BM25
/77777 Pull-text)
/ R weighted /

search (L)
‘Pu“ ‘t&ft) /]
////////////////// %

Comlame the Reranking [l Results
Scores

Metadata Filtering

- An extremely important component of production Retrieval is metadata filtering.

- Qutside of academic benchmarks, documents do not exist in a vacuum. There’s a
lot of metadata around them, some of which can be very informative.

- Take this query:

Can you get me the cruise division Financial report for Q4 20227

\

There is a lot of ways semantic search can fail here, the two main ones being:
- The model must accurately represent all of “financial report”, but also “cruise division”, “Q4” and “2022”,
into a single vector, otherwise it will fetch documents that look relevant but aren’t meeting one or more of

those criteria.
- If the number of documents you search for (“k”) is set too high, you will be passing irrelevant financial

reports to your LLM, hoping that it manages to figure out which set of numbers is correct.

Metadata Filtering

- It’s perfectly possible that vector search would succeed for this query, but it’s a lot
more likely that it will fail in at least one way.

- However, this is very easy to mitigate: there are entity detection models, such as

GILINER, who can very easily extract zero-shot entity types from text:

Can you get methe cruise division financial report for Q42022 ?

- All you need to do is ensure that business/query-relevant information is stored alongside
their associated documents.

- You can then use the extracted entities to pre-filter your documents, ensuring you only
perform your search on documents whose attributes are related to the query.

" GIiNER demo from Tom Aarsen on HuggingFace Spaces, based on GIINER, introduced in GLINER: Generalist Model for Named Entity Recognition using Bidirectional Transformer (2023). Zaratiana et

al. (try it if you haven’t already, it is a massive game-changer for any sort of pipeline that could use robust entity-detection with little overhead!)

https://github.com/urchade/GLiNER
https://huggingface.co/spaces/tomaarsen/gliner_medium-v2.1
https://github.com/urchade/GLiNER
https://arxiv.org/abs/2311.08526
https://arxiv.org/abs/2311.08526

The Final Compact MVP++

With this final additional component, this is what your MVP Retrieval pipeline should now look like:

Y/ //////M/////
/ Bi-Encoder %
(EMBCJ + Pool) /
([17777777/ S L Ll L / NN COS}V\Q
/ / P ,
(EM‘:QJ + Pool) o(o“ta —_— seomch
/////////////////////// /

/ Y
/\ docum?nt

Combme the I Reronking Mg Results
scores
Bmas

- Pi lteﬁng
I 777777, Pull-text)

e

'tp-‘dp (weggh'te,d

search

% toll et

i / e

This does look scarier (especially if you have to fit into a slide), but it’s very simple to implement.

The Final Compact MVP++ .oz oo,

docs = [{"text": x,

"category": "person"}
X wiki.page('Hayao Miyazaki').text.split('\n\n')]
docs += [{"text": x,
"category": "film"}
X wiki.page('Spirited Away').text.split('\n\n')]

- This is the full
lancedb
implementation of all the Tt Gieididas et o ety
triCkS discussed. model_registry = get registry().get("sentence-transformers")

model = model_registry.create(name="BAAI/bge-small-en-v1.5")

Document (LanceModel) :
text: str = model.SourceField()

= It might look Slightly vector: Vector(384) = model.VectorField()

category: str

unfriendly, but there iS db = lancedb.connect(".my_db")

tbl = db.create table("my_table", schema=Document)

actually very little to parse! b1 aaaaoee

tbl.create_ fts_index("text")

= Let,S Shed the data loading lancedb.rerankers CohereReranker

reranker = CohereReranker()

and see what’s going on...

query = "What is Chihiro's new name given to her by the witch?"

results = (tbl.search(query, query type="hybrid")
.where("category = 'film'", prefilter=)
.1imit(10)

.rerank(reranker=reranker)

)

lancedb
lancedb.pydantic LanceModel, Vector
lancedb.embeddings get_registry
lancedb.rerankers CohereReranker

[RIVCQPNLEII ——> model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5")

Document(LanceModel):
model.SourceField()
model.VectorField()

text: str =
vector: Vector(384)

Define document
metadata —> category: str
= lancedb.connect(".my_db")
= db.create_table("my_table", schema=Document)

Bi-Encoer
BN — = tb1l.add(docs)

t{\“gﬁl(;’gjgted B [bl.create fts_index("text")
U
'-—> reranker = CohereReranker()
: query = "What is Chihiro's new name given to her by the witch?"
(tbl.search(query, query_type="hybrid")
)

results =
.where("category = 'film'", prefilter=

Llimit(10)
.rerank(reranker=reranker)

)

That’s all folks

- There’s a lot more to cover, but this is your ideal quick MVP!

- Most other improvements are also very valuable, but will have decreasing
cost-effort ratio.

- It’s definitely worth learning about Sparse (like SPLADE) and multi-vector
methods (like ColBERT) if you're interested — feel free to bug me on the discord!

- You should watch Jason’s talk about RAG systems and Jo’s upcoming talk about
retrieval evaluations!

- Any questions?

