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About Me
I do R&D at Answer.AI under Jeremy Howard, with other awesome people.

Prior to joining Answer.AI, I worked in a variety of roles in NLP/Information Retrieval, 
eventually moving to consulting.

I made the RAGatouille library, which makes ColBERT friendlier to use, and also 
maintain the rerankers lib (more on that in a few slides!)

If you know me, it’s most likely via twitter, at @bclavie.

https://github.com/bclavie/ragatouille
https://github.com/answerdotai/rerankers
https://x.com/bclavie


Topics
Overall theme: Loose presentation of the core Retrieval Basics, as they should exist in all RAG 
pipelines:

- Rant: Retrieval was not invented in December 2022
- The “compact MVP”: Bi-encoder single vector embeddings and cosine similarity are all 

you need
- What’s a cross-encoder and why do I need it?
- Tf-idf and full text search is so 2000s 1990s 1980s 1970s, there’s no way it’s still relevant, 

right?
- Metadata Filtering: when not all content is potentially useful, don’t make it harder than it 

needs to be!
- “Compact MVP++” : All of the above in 30 lines or less.
- Bonus: Yes, one vector is good, but how about many of them?



❌ Topics
What I won’t be talking about today:

- ❌ How to systematically monitor and improve RAG systems (See Jason & Dan’s 
upcoming course for that!)

- ❌ Evaluations: These are far too important to be covered quickly, and Jo Bergum 
will be covering how to efficiently do them in his upcoming talk.

- ❌ Benchmarks/Paper references: in the interest of time & space, we’ll avoid big 
scary Table 3. and Figure 2. in those slides (except once).

- ❌ An overview of all the best performing models
- ❌ Synthetic data and training
- ❌ All the approaches you could actually use (sparse models, ColBERT…), which 

go beyond the very basics!



First, a quick rant
- RAG is not:

- A new paradigm
- A framework
- An end-to-end system
- Something created by Jason Liu in

his endless quest for a Porsche

- RAG is the act of stitching together Retrieval and Generation to ground the latter
- The Retrieval part comes from Information Retrieval, a very active field of 

research
- The Generation part is what’s handled by LLMs
- “Good RAG” is made up of good components:

- Good retrieval pipeline
- Good generative model
- Good way of linking them up



The compact MVP
The most compact (& most common) deep retrieval pipeline boils down to a very 
simple process:





Wait, where’s the vector DB?
- The vector db in this example is ` np.array `!
- A key point of using a vector DB (or an index) is to allow Approximate search, so 

you don’t have to compute too many cosine similarities.
- You don’t actually need one to search through vectors at small scales: any modern 

CPU can search through 100s of vectors in milliseconds.



Why are you calling embeddings “bi-encoders”?
- The representation method from the previous slides is commonly referred to as using 

“bi-encoders”

- Bi-encoders are (generally) used to create single-vector representations. They 
pre-compute document representations.

- Documents and query representations are computed entirely separately, they aren’t 
aware of each other.

- Thus, all you need to do at inference is to encode your query and search for similar 
document vectors

- This is very computationally efficient, but comes with retrieval performance tradeoffs.



Reranking: The power of Cross-Encoders (& more!)
- So if documents & query being unaware of each other is bad, how do we fix it?

- The most common approach is using Cross-Encoders:

- However, It’s not computationally realistic to compute query-aware document representations 
for every single query-document pair, everytime a new query comes up (imagine doing that 
against every Wikipedia paragraph!)



The World of Rerankers
- You might have also heard of other re-ranking approaches: RankGPT/RankLLM, 

T5-based rerankers, etc… 

- Their method differs but the core idea is the same: leverage a powerful but 
computationally expensive model to score only a subset your documents, previously 
retrieved by a more efficient model. 

- There are many models for you to try out, some of them 
API-based (Cohere, Jina…), some of them you can run 
locally (such as mixedbread). Luckily, I have a library to 
make that easy.

https://github.com/answerdotai/rerankers
https://github.com/answerdotai/rerankers


Compact Pipeline + Reranking
- With the addition of a re-ranking step, this is what your Retrieval pipeline now  

looks like:



Keyword Search: The Old Legend Lives On (½)
- Semantic search via embeddings is powerful, but compressing information from 

hundreds of tokens to a single vector is bound to lose information.

- Embeddings learn to represent information that is useful to their training queries.
- This training data will never be fully representative, especially when you use the 

model on your own data, on which it hasn’t been trained.

- Additionally, humans love to use keywords. We have very strong tendencies to 
notice and use certain acronyms, domain-specific words, etc…

- To capture all this signal, you should ensure your pipeline uses Keyword search



Keyword Search: The Old Legend Lives On (2/2)
- Keyword search, also called “full-text search”, is built on old technology: BM25, 

powered by tf-idf (a way of representing text and weighing down words that are 
common)

- An ongoing joke is that information retrieval has progressed slowly because BM25 
is too strong a baseline.

- BM25 is especially powerful on longer documents and documents containing a lot 
of domain-specific jargon.

- Its inference-time compute overhead is virtually unnoticeable, and it’s therefore a 
near free-lunch addition to any pipeline.



An arXiv-style Results Table to Praise BM25

Results table from
BEIR: A Heterogeneous 
Benchmark for Zero-shot
Evaluation of Information 
Retrieval Models (2021), 
Thakur et al.

This paper introduces BEIR, 
aka the retrieval part of 
MTEB.



The TF-IDF MVP++
With text search and reranking, this is what your pipeline now looks like:



Metadata Filtering
- An extremely important component of production Retrieval is metadata filtering.
- Outside of academic benchmarks, documents do not exist in a vacuum. There’s a 

lot of metadata around them, some of which can be very informative.
- Take this query:

- There is a lot of ways semantic search can fail here, the two main ones being:
- The model must accurately represent all of “financial report”, but also “cruise division”, “Q4” and “2022”, 

into a single vector, otherwise it will fetch documents that look relevant but aren’t meeting one or more of 
those criteria.

- If the number of documents you search for (“k”) is set too high, you will be passing irrelevant financial 
reports to your LLM, hoping that it manages to figure out which set of numbers is correct.



Metadata Filtering
- It’s perfectly possible that vector search would succeed for this query, but it’s a lot 

more likely that it will fail in at least one way.
- However, this is very easy to mitigate: there are entity detection models, such as 

GliNER, who can very easily extract zero-shot entity types from text:

- All you need to do is ensure that business/query-relevant information is stored alongside 
their associated documents.

- You can then use the extracted entities to pre-filter your documents, ensuring you only 
perform your search on documents whose attributes are related to the query.

❤ GliNER demo from Tom Aarsen on HuggingFace Spaces, based on GliNER, introduced in GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer (2023), Zaratiana et 
al. (try it if you haven’t already, it is a massive game-changer for any sort of pipeline that could use robust entity-detection with little overhead!)

https://github.com/urchade/GLiNER
https://huggingface.co/spaces/tomaarsen/gliner_medium-v2.1
https://github.com/urchade/GLiNER
https://arxiv.org/abs/2311.08526
https://arxiv.org/abs/2311.08526


The Final Compact MVP++
With this final additional component, this is what your MVP Retrieval pipeline should now look like:

This does look scarier (especially if you have to fit into a slide), but it’s very simple to implement.



The Final Compact MVP++

- This is the full 
implementation of all the 
tricks discussed.

- It might look slightly 
unfriendly, but there is 
actually very little to parse!

- Let’s shed the data loading 
and see what’s going on…





That’s all folks
- There’s a lot more to cover, but this is your ideal quick MVP!

- Most other improvements are also very valuable, but will have decreasing 
cost-effort ratio.

- It’s definitely worth learning about Sparse (like SPLADE) and multi-vector 
methods (like ColBERT) if you’re interested – feel free to bug me on the discord!

- You should watch Jason’s talk about RAG systems and Jo’s upcoming talk about 
retrieval evaluations!

- Any questions?


