
Back to basics?
Jo Kristian Bergum (@jobergum)

About

- Distinguished Engineer at
vespa.ai

- Vespa.ai is a mature serving
platform spun out of Yahoo

This talk

- Stuffing text into the LLM prompt
- Information retrieval - the R in RAG
- Evaluation of IR systems
- Building your own evals to impress your CTO
- Representational approaches for IR
- The baselines

Retrieval Augmented Generation (RAG)

Current date is {date}, Don’t be rude. I’ll tip $5. Think step-by-step.

I want you to classify the text input as positive, negative or neutral. Examples:

Input: I’m very happy today
Output: positive

Input: I’m sad today
Output: negative

Input: I don’t know what to feel today
Output: neutral

✨{many_retrieved_context_sensitive_examples}✨

Input: {input}
Output🪄:

Retrieval Augmented Generation (RAG)

Current date is {date}, Don’t be rude. I’ll tip $5. Think step-by-step.

I want you to summarize and answer the question using context retrieved by a search
engine.
Context: [1] BERT: Pre-training of deep bidirectional transformers for language
understanding…
Question: What is a bidirectional transformer model?
Helpful answer: bidirectional means that tokens attend to all other tokens in the input
sequence [1].
 ✨{retrieved_context_sensitive_examples}✨

Context: {retrieved_context_question}
Question: {question}
Helpful answer🪄:

Working with LLMs: Reference architecture

Search Engine

Database

Vector database

Prompt

LLM

NumPy

File

“Orchestration”

Input

Output LLM

Prompt

LLM

EVAL?

New model just dropped 🧵
Improve RAG with this weird
trick🧵
New advanced RAG retriever
just dropped, here is what you
need to know 🧵
New 7B embedding model with
8K context just dropped 🧵
3072 floats is all you need!🧵

State of RAG 2024

RAG

LLM + “AI” Vectors from

Call it a day?

The R in RAG: Information Retrieval (IR)

- The process of obtaining relevant information
based on a user’s information need expressed
as a query/question

Occupied the brightest minds in computer
science for decades

Evaluating Information Retrieval Systems

Retrieval System

Query

Doc 3

Doc 2

Doc 1

Doc 4

Ranked list of
documents for
query

?

Evaluating Information
Retrieval Systems

Doc 5 😳
Judge query ⇔ document
pairs

Binary judgment label:
- 🙂/😐

Graded judgment label:
- Very relevant, slightly relevant,

irrelevant, my boss will fire me😳

Ranked list for query

Doc 2 😐

Doc 3 😐

Doc 4 🙂

Evaluating Information Retrieval Systems

Assess effectiveness and compare systems
on IR relevancy datasets

Common IR datasets:

- Text REtrieval Conference (TREC)
- Many collections spanning decades
- Different domains and tasks

- MS Marco Passage/Document Ranking
- Biggest training data (query, relevant doc)
- Web search domain from Bing

- BEIR Benchmark (beir.ai)
- Collection of IR collections
- Many different domains and tasks
- Zero-shot evaluation (no training data)

Ranking metrics

- Recall@k (All the relevant)
- Precision@k (Nothing but relevant)
- nDCG@k (Graded, rank-aware)
- Reciprocal Rank
- LGTM@10
- Industry:

- Engagement: click, dwell, add to chart
- Revenue
- Multi-objective ranking (Not just optimizing relevance..)
- Note query distributions

- Head (frequent) versus tail queries

12

Do better than LGTM@10

The dirty secret they have
been hiding from you!

- Your data, your queries!
- Not some random IR

dataset unrelated to your
data.

- Build your own
relevance dataset

Build your own golden relevance dataset

- Got real traffic? Sample those queries from head/torso
- No traffic? Ask a LLM to generate queries for your content
- It doesn’t need to be fancy - A simple tsv file does the trick
- Preferably “static” collection (documents)

qid docid relevance label comment

3 (how to ..) 4 2

3 (where ..) 2 0

In this example using graded relevance (0 irrelevant,
1 somehow relevant, 2 highly relevant)

Build your own relevance dataset

Golden dataset created by humans
(you/domain experts)

Find prompt that correlates with golden
dataset labels

Let the LLM evaluate more query and
document pairs at scale

Eval, but also training/improving..

Build your own relevance
dataset

Sample prompt for relevance judgment

 UMBRELA: UMbrela is the (Open-Source Reproduction of the Bing

RELevance Assessor https://arxiv.org/abs/2406.06519 (June 10, 2024)

Easier than ever to build your own relevance dataset
for your use case

LLM Judge also can free us from static golden
collections, instead sample real user traffic.

https://arxiv.org/abs/2406.06519

LLM as relevance assessor (gpt4o)

Important to have a golden set to find correlation between LLM judge and human

Golden set - 90 query, passage judgment pairs for Vespa documentation search

F1 Score: 0.89

12 True Negative 8 False Positive

8 False Negative 62 True Positive

With your own eval dataset you can impress your CTO

From “we changed title boost” to “we deployed a change that increases
nDCG@12 with 30%” https://github.com/vespa-cloud/vespa-documentation-search/tree/main/eval

Representational approaches in IR

- Text representations
- Scoring functions

The text data we want to
represent Representation

Motivation for representational IR

Avoid scoring all documents D in collection for a query Q

Docs

Query

for d in
docs Score(Q,D) Ranked

docs
Sort

Motivation for representational IR

Avoid scoring all documents D in collection for a query Q

Docs

Query

Index
docs

Score(Q,D) Ranked
docs

Sort

Index

Text Representations

Into the implementation details

Accelerating retrieval over sparse representations

- Build inverted index data structures
- Search accelerated with top-k retrieval algorithms like WAND, MaxScore,

BM-WAND and more
- Supervised (e.g splade) or unsupervised (e.g bm25, tf-idf)

Accelerating retrieval over dense representations

- Build vector index (IVF,PQ,HNSW, DiskANN++)
- Search accelerated (but approximate)
- Mainly supervised via transfer-learning (text embedding models)

Text embeddings - Learned representations

Popularized by OpenAI
text embeddings API

Represent queries and
documents in a latent
fixed d vector space

Score(q,d) = cosine
similarity(q,d)/dot(q,d)

Accelerated retrieval via
ANN (but brute-force might be all

you need)

Challenges with
embedding models

- Pooling dilutes long text
representation

- Require chunking
- One doc - many chunks and

vectors
- Retrieve docs or chunks?

- Fixed vocabulary
- GGUF Llama 3 2024 =>

- ['g', '##gu', '##f', 'll', '##ama', '3', '202', '##4']

- Learned representation -
transfer capabilities to your
domain/data?

The (often?) missing baseline

BM25 (Best Match 25) was designed
for variable length texts. Statistical
analysis of your data.

Cheap, small index footprint.

No embedding model inference
required

Limited, but avoids spectacular failures

Also require tokenization and linguistic
processing

From https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/

https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/

Hybrid alternative

Combine best of both
sparse and dense
representations?

Overcome fixed vocab

Not a single silver bullet,
but avoids common
failure scenarios with
single vector
representations

All you need to know about chunking

Dense representations beyond 256 tokens are bad for high precision search

- Because the models haven’t been trained with longer sequences
- Longer texts drifts in topics

You need to chunk for meaningful vector representations for search

You don’t need to chunk a text into multiple rows and replicate metadata if
using the right serving stack (vespa.ai)

Real world RAG

More than text similarity score

- Freshness
- Authority
- Quality
- Pagerank
- Revenue

Lots of features and ranking
phases for retrieval at scale

GBDT is still king of tabular
features

Summary

- IR is more than single-vector representation
- Build your own evals
- Don’t ignore the BM25 baseline
- Hybrid capabilities avoids the worst failure modes
- Long context single-vector embedding models

underperforms
- Real-world search is more than text similarity

Resources

https://blog.vespa.ai/

Vespa RAG

https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus
%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p

https://search.vespa.ai/search?query=what%20is%20multi-vector%20indexing%3F

https://blog.vespa.ai/
https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p
https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p
https://search.vespa.ai/search?query=what%20is%20multi-vector%20indexing%3F

Q & A

Hated it? Tweet me @jobergum

