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About

- Distinguished Engineer at 
vespa.ai 

- Vespa.ai is a mature serving 
platform spun out of Yahoo



This talk 

- Stuffing text into the LLM prompt 
- Information retrieval -  the R in RAG
- Evaluation of IR systems 
- Building your own evals to impress your CTO 
- Representational approaches for IR 
- The baselines 



Retrieval Augmented Generation (RAG) 

Current date is {date}, Don’t be rude. I’ll tip $5. Think step-by-step.

I want you to classify the text input as positive, negative or neutral. Examples:

Input: I’m very happy today 
Output: positive
 
Input: I’m sad today
Output: negative 

Input: I don’t know what to feel today 
Output: neutral
 
✨{many_retrieved_context_sensitive_examples}✨

Input: {input}
Output🪄: 



Retrieval Augmented Generation (RAG) 

Current date is {date}, Don’t be rude. I’ll tip $5. Think step-by-step.

I want you to summarize and answer the question using context retrieved by a search 
engine.
Context: [1] BERT: Pre-training of deep bidirectional transformers for language 
understanding… 
Question: What is a bidirectional transformer model? 
Helpful answer: bidirectional means that tokens attend to all other tokens in the input 
sequence [1].  
 ✨{retrieved_context_sensitive_examples}✨

Context: {retrieved_context_question}
Question: {question}
Helpful answer🪄: 



Working with LLMs: Reference architecture 
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New model just dropped 🧵
Improve RAG with this weird 
trick🧵
New advanced RAG retriever 
just dropped, here is what you 
need to know 🧵
New 7B embedding model with 
8K context just dropped 🧵
3072 floats is all you need!🧵

 

State of RAG 2024 



RAG

LLM + “AI” Vectors from

Call it a day? 



The R in RAG: Information Retrieval (IR) 

- The process of obtaining relevant information 
based on a user’s information need expressed 
as a query/question 

Occupied the brightest minds in computer 
science for decades 



Evaluating Information Retrieval Systems 

Retrieval System

Query

Doc 3

Doc 2
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?



Evaluating Information 
Retrieval Systems 

Doc 5 😳
Judge query ⇔ document 
pairs

Binary judgment label:
- 🙂/😐

Graded judgment label:
- Very relevant, slightly relevant, 

irrelevant, my boss will fire me😳

Ranked list for query 

Doc 2 😐

Doc 3 😐

Doc 4 🙂



Evaluating Information Retrieval Systems

Assess effectiveness and compare systems 
on IR relevancy datasets

Common IR datasets:

- Text REtrieval Conference (TREC) 
- Many collections spanning decades
- Different domains and tasks 

- MS Marco Passage/Document Ranking
- Biggest training data (query, relevant doc)
- Web search domain from Bing

- BEIR Benchmark (beir.ai) 
- Collection of IR collections
- Many different domains and tasks
- Zero-shot evaluation (no training data)  

Ranking metrics  

- Recall@k  (All the relevant)
- Precision@k  (Nothing but relevant)
- nDCG@k (Graded, rank-aware)
- Reciprocal Rank 
- LGTM@10 
- Industry:

- Engagement: click, dwell, add to chart
- Revenue
- Multi-objective ranking (Not just optimizing relevance..)
- Note query distributions 

- Head (frequent) versus tail queries

12



Do better than LGTM@10 

The dirty secret they have 
been hiding from you!

- Your data, your queries! 
- Not some random IR 

dataset unrelated to your 
data. 

- Build your own 
relevance dataset 



Build your own golden relevance dataset 

- Got real traffic? Sample those queries from head/torso 
- No traffic? Ask a LLM to generate queries for your content
- It doesn’t need to be fancy - A simple tsv file does the trick
- Preferably “static” collection (documents)   

qid docid relevance label comment

3 (how to ..) 4 2

3 (where ..) 2 0

In this example using graded relevance (0 irrelevant, 
1 somehow relevant, 2 highly relevant)



Build your own relevance dataset 

Golden dataset created by humans 
(you/domain experts)

Find prompt that correlates with golden 
dataset labels

Let the LLM evaluate more query and 
document pairs at scale

Eval, but also training/improving.. 



Build your own relevance 
dataset 

Sample prompt for relevance judgment

 UMBRELA: UMbrela is the (Open-Source Reproduction of the Bing 

RELevance Assessor https://arxiv.org/abs/2406.06519 (June 10, 2024)

Easier than ever to build your own relevance dataset 
for your use case

LLM Judge also can free us from static golden 
collections, instead sample real user traffic. 

https://arxiv.org/abs/2406.06519


LLM as relevance assessor (gpt4o)

Important to have a golden set to find correlation between LLM judge and human

Golden set - 90 query, passage judgment pairs for Vespa documentation search 

F1 Score: 0.89 

12 True Negative 8 False Positive

8 False Negative 62 True Positive



With your own eval dataset you can impress your CTO 

From “we changed title boost” to “we deployed a change that increases 
nDCG@12 with 30%” https://github.com/vespa-cloud/vespa-documentation-search/tree/main/eval



Representational approaches in IR

- Text representations
- Scoring functions 

The text data we want to 
represent Representation



Motivation for representational IR 

Avoid scoring all documents D in collection for a query Q 

Docs

Query

for d in 
docs Score(Q,D) Ranked 

docs 
Sort



Motivation for representational IR 

Avoid scoring all documents D in collection for a query Q 

Docs

Query

Index 
docs

Score(Q,D) Ranked 
docs 

Sort

Index



Text Representations

Into the implementation details

Accelerating retrieval over sparse representations 

- Build inverted index data structures 
- Search accelerated with top-k retrieval algorithms like WAND, MaxScore, 

BM-WAND and more 
- Supervised (e.g splade) or unsupervised (e.g bm25, tf-idf) 

Accelerating retrieval over dense representations  

- Build vector index (IVF,PQ,HNSW, DiskANN++)
- Search accelerated (but approximate)
- Mainly supervised via transfer-learning (text embedding models) 



Text embeddings - Learned representations  

Popularized by OpenAI 
text embeddings API 

Represent queries and 
documents in a latent 
fixed d vector space

Score(q,d) = cosine 
similarity(q,d)/dot(q,d)

Accelerated retrieval via 
ANN (but brute-force might be all 

you need) 



Challenges with 
embedding models

- Pooling dilutes long text 
representation 

- Require chunking 
- One doc - many chunks and 

vectors 
- Retrieve docs or chunks?

- Fixed vocabulary
- GGUF Llama 3 2024 =>

- ['g', '##gu', '##f', 'll', '##ama', '3', '202', '##4']

- Learned representation - 
transfer capabilities to your 
domain/data? 



The (often?) missing baseline 

BM25 (Best Match 25) was designed 
for variable length texts. Statistical 
analysis of your data. 

Cheap, small index footprint. 

No embedding model inference 
required

Limited, but avoids spectacular failures

Also require tokenization and linguistic 
processing 



From https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/

https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/


Hybrid alternative 

Combine best of both 
sparse and dense 
representations? 

Overcome fixed vocab

Not a single silver bullet, 
but avoids common 
failure scenarios with 
single vector 
representations



All you need to know about chunking

Dense representations beyond 256 tokens are bad for high precision search 

- Because the models haven’t been trained with longer sequences 
- Longer texts drifts in topics 

You need to chunk for meaningful vector representations for search 

You don’t need to chunk a text into multiple rows and replicate metadata if 
using the right serving stack (vespa.ai) 



Real world RAG   

More than text similarity score 

- Freshness
- Authority
- Quality
- Pagerank  
- Revenue 

Lots of features and ranking 
phases for retrieval at scale

GBDT is still king of tabular 
features 



Summary 

- IR is more than single-vector representation 
- Build your own evals
- Don’t ignore the BM25 baseline 
- Hybrid capabilities avoids the worst failure modes 
- Long context single-vector embedding models 

underperforms
- Real-world search is more than text similarity 



Resources 

https://blog.vespa.ai/

Vespa RAG 

https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus
%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p

https://search.vespa.ai/search?query=what%20is%20multi-vector%20indexing%3F

https://blog.vespa.ai/
https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p
https://search.vespa.ai/search?query=what%20is%20the%20benefit%20of%20colbert%20versus%20single%20vector%20models%3F&namespace=open-p,cloud-p,vespaapps-p,pyvespa-p
https://search.vespa.ai/search?query=what%20is%20multi-vector%20indexing%3F


Q & A

Hated it? Tweet me @jobergum 


