SCALING MODEL TRAINING WITH MORE COMPUTE, HOW DO THEY DO IT?

WHO AM 1?

- Zachary Mueller
- Technical Lead for the Accelerate project
- API design geek

UNDERSTANDING GPU USAGE

- We can somewhat estimate the memory usage in vanilla full-fine-tuning of models
- Requires certain assumptions (that I'll be covering):
 - Adam optimizer
 - Batch size of 1

UNDERSTANDING GPU USAGE

General estimate (bert-base-cased, 108M params):

- Each parameter is 4 bytes
- Backward ~= 2x the model size
- The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):

dtype	Model	Gradients	Backward pass	Optimizer step	Highest
float32	413.18 MB	413.18 MB	826.36 MB	1.61 GB	1.61 GB
float16	413.18 MB*	619.77 MB	826.36 MB	826.36 MB	826.36 MB

^{*}All estimations were based off the Model Estimator Tool

UNDERSTANDING GPU USAGE

This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).

But what happens as we scale?

Here's 11ama-3-8B (8.03B parameters)

dtype	Model	Gradients	Backward pass	Optimizer step	Highest
float32	28.21 GB	28.21 GB	56.43 GB	112.84 GB	112.84 GB
float16	28.21 GB*	42.32 GB	56.43 GB	56.43 GB	56.43 GB

Well, I don't have 56GB of GPU memory in a single card, let alone 112GB.

What can we do?

DISTRIBUTED TRAINING

KINDS OF TRAINING

- Single GPU:
 - No distributed techniques at play
- Distributed Data Parallelism (DDP):
 - A full copy of the model exists on each device, but data is chunked between each GPU
- Fully Sharded Data Parallelism (FSDP) & DeepSpeed (DS):
 - Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs

FULLY SHARDED DATA PARALLELISM

FULLY SHARDED DATA PARALLELISM

Fully sharded data parallel training

FSDP: GETTING PARAMETER SPECIFIC

- Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs
- These include how model weights are sharded, gradients, and more.
- I'll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B without PEFT on 2x4090's

sharding_strategy

- Dictates the level of divving resources to perform
 - FULL_SHARD: Includes optimizer states, gradients, and parameters
 - SHARD_GRAD_OP: Includes optimizer states and gradients
 - NO_SHARD: Normal DDP
 - HYBRID_SHARD: Includes optimizer states, gradients, and parameters but each node has the full model

auto_wrap_policy:

- How the model should be split
- Can be either TRANSFORMER_BASED_WRAP or SIZE_BASED_WRAP
- TRANSFORMER/ fsdp_transformers_layer_cls_to_wrap:
 - Need to declare the layer
 - Generally transformers has good defaults
- SIZE/fsdp_min_num_param:
 - Number of total parameters in a shard

offload_params:

- Offloads the parameters and gradients to the CPU if they can't fit into memory
- Allows you to train much larger models locally, but will be much slower

Case: FFT of Llama-3-8B with fsdp_offload_params on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100

cpu_ram_efficient_loading AND sync_module_states

- Uses the idea behind big model inference/the meta device to load in the model to the GPU in a low-ram scenario
- Rather than needing model_size * n_gpus RAM, we can
 load the model on a single node and then send the weights
 directly to each shard when the time is right via
 sync_module_states

TYING THIS TO SACCELERATE

TYING THIS TO SOME ACCELERATE

- So far we've covered the theory, but how do we put it into practice
- By using a library that's at the heart of the entire opensource ecosystem
 - Nearly all of 🤗
 - axolotl
 - fastai
 - FastChat
 - lucidrains
 - kornia

Are you using it and you don't even know?

WHAT IS ACCELERATE?

A CLI INTERFACE

- accelerate config
 - Configure the environment
- accelerate estimate-memory
 - How to guess vRAM requirements
- accelerate launch
 - How to run your script

LAUNCHING DISTRIBUTED TRAINING IS HARD

```
1 python script.py
1 torchrun --nnodes=1 --nproc_per_node=2 script.py
1 deepspeed --num_gpus=2 script.py
```

How can we make this better?

accelerate launch

1 accelerate launch script.py

accelerate config

- Rely on config.yaml files
- Choose to either running accelerate config or write your own:

ddp_config.yaml

```
1 compute_environment: LOCAL_MACHINE
2 distributed_type: MULTI_GPU
3 main_training_function: main
4 mixed_precision: bf16
5 num_machines: 1
6 num processes: 8
```

fsdp_config.yaml

```
1 compute_environment: LOCAL_MACHINE
2 distributed_type: FSDP
3 fsdp_config:
4 fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
5 fsdp backward prefetch: BACKWARD PRE
     fsdp cpu ram efficient loading: true
     fsdp forward prefetch: false
     fsdp offload params: false
     fsdp_sharding_strategy: FULL_SHARD
10 fsdp_state_dict_type: SHARDED_STATE_DICT
11 fsdp_sync_module_states: true
12 fsdp_use_orig_params: false
13 main_training_function: main
14 mixed precision: bf16
15 num machines: 1
16 num processes: 8
```

A TRAINING LIBRARY

A TRAINING LIBRARY: THE CODE

```
# For alignment purposes
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
    inputs = inputs.to(device)
    targets = targets.to(device)
    outputs = model(inputs)
    loss = loss_function(outputs, targets)
    loss.backward()
    optimizer.step()
scheduler.step()
```

```
1 from accelerate import Accelerator
 2 accelerator = Accelerator()
 3 dataloader, model, optimizer scheduler = (
 4 accelerator.prepare(
           dataloader, model, optimizer, scheduler
 6
7)
9 for batch in dataloader:
     optimizer.zero grad()
      inputs, targets = batch
      # inputs = inputs.to(device)
     # targets = targets.to(device)
13
      outputs = model(inputs)
14
15
       loss = loss_function(outputs, targets)
       accelerator.backward(loss) # loss.backward()
17
       optimizer.step()
       scheduler.step()
```

A TRAINING LIBRARY: HOW SCALING WORKS

- Accelerate's DataLoaders and schedulers work off of a sharding mindset
- Rather than repeating the same data across n nodes, we instead split it
- Speeds up training linearly
- Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2
- This also means the scheduler will be stepped n GPUs at a time per "global step"

A TRAINING LIBRARY: MIXED PRECISION

- This may be a bit different than your "normal" idea of mixed precision.
- We do not convert the model weights to BF16/FP16
- Instead we wrap the forward pass with autocast to convert the gradients automatically
- This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.
- If you use .bf16() weights, you are STUCK in bf16 perminantly

A TRAINING LIBRARY: MIXED PRECISION

• Let's tie that back up to the model estimator with neat tools like NVIDIA's TransformerEngine

Optimization Level	Computation (GEMM)	Comm	Weight	Master Weight	Weight Gradient	Optimizer States
FP16 AMP	FP16	FP32	FP32	N/A	FP32	FP32+FP32
Nvidia TE	FP8	FP32	FP32	N/A	FP32	FP32+FP32
MS-AMP O1	FP8	FP8	FP16	N/A	FP8	FP32+FP32
MS-AMP O2	FP8	FP8	FP16	N/A	FP8	FP8+FP16
MS-AMP 03	FP8	FP8	FP8	FP16	FP8	FP8+FP16

DEEPSPEED VS FULLY SHARDED DATA PARALLELISM

 Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation

Framework	Model Loading (torch_dtype)	Mixed Precision	Preparation (Local)	Training	Optimizer (Local)
FSDP	bf16	default (none)	bf16	bf16	bf16
FSDP	bf16	bf16	fp32	bf16	fp32
DeepSpeed	bf16	bf16	fp32	bf16	fp32

To learn more, check out the documentation or join my office hours

KEY TAKEAWAYS:

- You can scale out training with accelerate, FSDP, and DeepSpeed across multiple GPUs to train bigger models
- Techniques like FP8 can help speed up training some and reduce computational overhead
- Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful

SOME HANDY RESOURCES

- Accelerate documentation
- Launching distributed code
- Distributed code and Jupyter Notebooks
- Migrating to
 Accelerate easily
- Big Model Inference tutorial
- DeepSpeed and Accelerate
- Fully Sharded Data Parallelism and
 Accelerate
- FSDP vs DeepSpeed In-Depth