SCALING MODEL TRAINING WITH
MORE COMPUTE, HOW DO THEY DO
17

WHO AM 17

e Zachary Mueller

)

~

e Technical Lead for the & Accelerate project

(

e APl design geek

UNDERSTANDING GPU USAGE

e We can somewhat estimate the memory usage in vanilla
full-fine-tuning of models

e Requires certain assumptions (that I'll be covering):
= Adam optimizer

s Batchsizeof 1

UNDERSTANDING GPU USAGE

General estimate (bert-base-cased, 108M params):

e Each parameter is 4 bytes

e Backward ~= 2x the model size

e The optimizer step ~= 4x the model size (1x model, 1x
gradients, 2x optimizer):

dtype Model Gradients Backward pass Optimizerstep Highest
float32 413.18MB 413.18 MB 826.36 MB 1.61GB 1.61GB
float1l6 413.18 MB* 619.77 MB 826.36 MB 826.36 MB 826.36 MB

*All estimations were based off the Model Estimator Tool

UNDERSTANDING GPU USAGE

This works fine for small models, we have cards with
anywhere from 12-24GB of GPU memory (on the GPU-poor
side).

But what happens as we scale?
Here's 11ama-3-8B (8.03B parameters)

dtype Model Gradients Backward pass Optimizerstep Highest
float32 28.21GB 28.21GB 56.43 GB 112.84 GB 112.84 GB
floatl6 28.21GB* 42.32GB 56.43 GB 56.43 GB 56.43 GB

Well, | don’'t have 56GB of GPU memory in a single card, let
alone 112GB.

What can we do?

DISTRIBUTED TRAINING

KINDS OF TRAINING

e Single GPU:
= Nodistributed techniques at play
e Distributed Data Parallelism (DDP):

= A full copy of the model exists on each device, but data
is chunked between each GPU

e Fully Sharded Data Parallelism (FSDP) & DeepSpeed (DS):

= Split chunks of the model and optimizer states across
GPUs, allowing for training bigger models on smaller
(multiple) GPUs

FULLY SHARDED DATA PARALLELISM

FULLY SHARDED DATA PARALLELISM

Fully sharded data parallel training

> ALL-) FORWARD ALL-) BACKWARD > ::It:iﬁlerEi
GATHER [LOCAL) GATHER (LOCAL)
[LOCAL)
s M LAYERS K g M LAYERS s

1 : i

[] L] |]

1L L]]

L] i i

i ' H

GATHER GATHER 5YMC
WEIGHTS WEIGHTS GRADS

1] []

1] |]

|]] |]

i L}

1 I]

: : :

" M LAYERS e M LAYERS '
> FORWARD BACKWARD REDUCE- lll:l'::ltlTTEl
[LOCAL)) (LOCAL) SCATTER

[LOCAL}

FSDP: GETTING PARAMETER SPECIFIC

e Different parameters can dicatate how much memory is
needed for total GPU training across multiple GPUs

e These include how model weights are sharded, gradients,
and more.

e |'ll cover some important ones | needed when doing a Full-
Fine-Tune of Llama-3-8B without PEFT on 2x4090’s

sharding strategy

e Dictates the level of divving resources to perform

= FULL SHARD: Includes optimizer states, gradients, and
parameters

= SHARD GRAD_ OP: Includes optimizer states and
gradients

= NO SHARD: Normal DDP

= HYBRID SHARD: Includes optimizer states, gradients,
and parameters but each node has the full model

auto wrap policy:

e How the model should be split

e Canbe either TRANSFORMER BASED WRAP or
SIZE BASED WRAP

e TRANSFORMER/
fsdp transformers layer cls to wrap:

= Need to declare the layer

= Generally transformers has good defaults
e SIZE/fsdp _min_num_param:

= Number of total parameters in a shard

offload params:

e Offloads the parameters and gradients to the CPU if they
can’t fit into memory

e Allows you to train much larger models locally, but will be
much slower

Case: FFT of Llama-3-8B with fsdp offload paramson

2x4090 GPUs was 72hrs, vs ~an hour or two when using
1xH100

cpu ram efficient loadingAND
sync_module states

e Uses the idea behind big model inference/the meta device
to load in the model to the GPU in alow-ram scenario

e Rather than needingmodel size*n gpus RAM, we can
load the model on a single node and then send the weights
directly to each shard when the time is right via
sync_module states

TYINGTHISTO &= ACCELERATE

TYING THISTO &= ACCELERATE

e So far we've covered the theory, but how do we put it into
practice

e By using alibrary that’s at the heart of the entire open-
source ecosystem

e Nearly all of &2
e axolotl

e fastai

e FastChat

e lucidrains

e kornia

Are you using it and you don’t even know?

WHAT IS &2 AGCELERATE?

B> CLl Interface
&2 Accelerate » Training Library

Big Model
Inference

A GLI INTERFACE

e accelerate config

= Configure the environment
e accelerate estimate-memory

= How to guess VRAM requirements
e accelerate launch

= How to run your script

LAUNCHING DISTRIBUTED TRAINING IS HARD

® 1 script.py
® 1 =1 =2 script.py
® 1 =2 script.py

How can we make this better?

accelerate launch

1 accelerate launch script.py

accelerate config

e Relyon config.yaml files

e Choosetoeither running accelerate configorwrite
your own:

ddp_config.yaml fsdp_config.yaml
1 compute environment: LOCAL MACHINE 1 compute_ environment: AL MACHINE
2 distributed type: MULTI GPU 2 distributed type: FSDP
3 main_training function: main 3 fsdp_config:
4 mixed precision: bfl6 4 fsdp auto wrap policy: TR IRAP
5 num machines: 1 5 fsdp backward prefetch: BA
6 num processes: 8 6 fsdp cpu ram efficient loadin
7 fsdp forward prefetch: false
8 fsdp offload params: false
9 fsdp sharding strategy: FULL SHARD
10 fsdp state dict type: SHARDED STATE DICT
11 fsdp sync module states: true
12 fsdp use orig params: fa >
13 main_ training function: mair
14 mixed precision: bflé6

15 num machines: 1
16 num processes: 8

A TRAINING LIBRARY

A TRAINING LIBRARY: THE CODE

[

= O W 0 J o U b W N

For alignment purposes

for batch in dataloader:
optimizer.zero grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model (inputs)
loss = loss_ function (outputs,
loss.backward()
optimizer.step /()
scheduler.step ()

targets)

W J oUW N

N
wJ oUW O W

accelerate Accelerator
accelerator = Accelerator()
dataloader, model, optimizer scheduler = (
accelerator.prepare (
dataloader, model, optimizer, scheduler

for batch in dataloader:
optimizer.zero grad()
inputs, targets = batch
inputs = inputs.to (device)
targets = targets.to(device)
outputs = model (inputs)
loss = loss_function (outputs, targets)
accelerator.backward (loss) # loss.backward()
optimizer.step ()
scheduler.step()

A TRAINING LIBRARY: HOW SCALING WORKS

e Accelerate’s DatalLoaders and schedulers work off of a
sharding mindset

e Rather than repeating the same data across n nodes, we
instead split it

e Speeds up training linearly

e Given abatch size of 16 on a single GPU, to recreate this
across 8 GPUs you would use a batch size of 2

e This also means the scheduler will be stepped n GPUs at a
time per “global step”

A TRAINING LIBRARY: MIXED PRECISION

e This may be a bit different than your “normal” idea of
mixed precision.

e We do not convert the model weights to BF16/FP16

e Instead we wrap the forward pass with autocast to
convert the gradients automatically

e This preserves the original precision of the weights, which
leads to stable training and better fine-tuning later on.

o |[fyouuse .bf16() weights, you are STUCK in bf16
perminantly

A TRAINING LIBRARY: MIXED PRECISION

e Let's tie that back up to the model estimator with neat
tools like NVIDIA's TransformerEngine

Optimization Computation Comm Weight Master Weight Optimizer
Level (GEMM) Weight Gradient States
FP16 AMP FP16 FP32 FP32 N/A FP32 FP32+FP32
Nvidia TE FP8 FP32 FP32 N/A FP32 FP32+FP32
MS-AMP O1 FP8 FP8 FP16 N/A FP8 FP32+FP32
MS-AMPO2 FP8 FP8 FP16 N/A FP8 FP8+FP16

MS-AMP O3 FP8 FP8 FP8 FP16 FP8 FP8+FP16

DEEPSPEED VS FULLY SHARDED DATA PARALLELISM

e Extremely similar, however mostly used different naming
conventions for items and slight tweaks in the
implementation

Framework Model Loading Mixed Precision Preparation Training Optimizer (Local)
(torch_dtype) (Local)

FSDP bf16 default (none) bf16 bf16 bf16

FSDP bf16 bf16 fp32 bf16 fp32

DeepSpeed bf16 bfl16 fp32 bf16 fp32

To learn more, check out the documentation or join my office
hours

KEY TAKEAWAYS:

e You can scale out training with accelerate, FSDP, and
DeepSpeed across multiple GPUs to train bigger models

e Techniques like FP8 can help speed up training some and
reduce computational overhead

e Comes at a cost of end-precision and locking model
weights for futher fine-tunes if not careful

SOME HANDY RESOURCES

e & Accelerate documentation

e Launching distributed code

e Distributed code and Jupyter Notebooks
e Migratingto & Accelerate easily

e Big Model Inference tutorial

e DeepSpeed and & Accelerate

e Fully Sharded Data Parallelism and & Accelerate
e FSDP vs DeepSpeed In-Depth

