
Prompt Engineering
John Berryman

career
3

career
2

career
1

Hi! I'm John Berryman
● Aerospace Engineer (just long enough to get

the merit badge)
● Search Technology Consultant
● Eventbrite Search Engineer
● Wrote a book. (Swore never to do so again.)
● GitHub Code Search
● GitHub Data Science
● GitHub Copilot Prompt Engineer
● Writing a book. (But why!?)

career
4 ● LLM Application Consulting – Arcturus?

What is a Language Model? How has this
taking the
world by
storm?

What is a Large Language Model?

It's the same thing, just a lot more accurate.

● c. 2014 the top language models were Recurrent Neural Networks
● Sept 2014 Attention mechanism introduced in "Neural Machine Translation by

Jointly Learning to Align and Translate" – allowed "soft search" of previous context.
● Jun 2017 got rid of RNNs because "Attention is all you Need" – introduced

Transformer architecture
● Jun 2018 chopped the Transformer in half in "Improving Language Understanding by

Generative Pre-Training" only use the decoder side – this is GPT!
● Feb 2019 GPT-2 was trained on 10x the data in "Language Models are Unsupervised

Multitask Learners" … and things started getting weird.

Our model, called GPT-2 (a successor to GPT), was trained simply to predict the next word in 40GB of Internet text. Due to our concerns about malicious applications of the technology, we are not releasing the trained model. (ref)

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openai.com/research/better-language-models

● But with great power comes great responsibility. Models can:
○ Generate misleading news articles
○ Impersonate others online
○ Automate the production of abusive or faked content to post on social media
○ Automate the production of spam/phishing content

(These are all from the Feb 2019 GPT-2 release article.)

What is a Large Language Model

● GPT-2 was beating models trained for specific tasks
○ missing word prediction
○ pronoun understanding
○ part of speech tagging
○ text compression

○ summarization
○ sentiment analysis
○ entity extraction
○ question answering
○ translation
○ content generation

https://openai.com/research/better-language-models

What is a Large Language Model

● GPT-2 was beating models trained for specific tasks
○ missing word prediction
○ pronoun understanding
○ part of speech tagging
○ text compression

○ summarization
○ sentiment analysis
○ entity extraction
○ question answering
○ translation
○ content generation

● But with great power comes great responsibility. Models can:
○ Generate misleading news articles
○ Impersonate others online
○ Automate the production of abusive or faked content to post on social media
○ Automate the production of spam/phishing content

(These are all from the Feb 2019 GPT-2 release article.)

Our model, called GPT-2 (a successor to GPT), was trained simply to predict the next word in 40GB of Internet text. Due to our concerns about malicious applications of the technology, we are not releasing the trained model. (ref)

Our model, called GPT-2 (a successor to GPT), was trained simply to predict the next word in 40GB of Internet text.…And we figured out that now you can just ask it to do stuff and it will!
IT'S AMAZING

(But also it will help you make bombs, and drugs, and overthrow governments. So…) Due to our concerns about malicious applications of the technology, we are not releasing the trained model.

https://openai.com/research/better-language-models
https://openai.com/research/better-language-models

Prompt Crafting

> How are you doing today?
< ¿Cómo estás hoy?

> My name is John.
< Mi nombre es John.

> Can I have fries with that?
< ¿Puedo tener papas fritas con eso?

technique #1: few-shot prompting

"Language Models are Few-Shot Learners" May 2020

examples to set the pattern

the actual task

https://arxiv.org/abs/2005.14165

Q: It takes one baker an hour to
make a cake. How long does it
take 3 bakers to make 3 cakes?
A: 3

technique #2: chain-of-thought
reasoning

"Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models"

Jan 2022

Prompt Crafting

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Q: Jim is twice as old as Steve. Jim
is 12 years how old is Steve.
A: In equation form: 12=2*a
where a is Steve's age. Dividing
both sides by 2 we see that a=6.
Steve is 6 years old.

Q: It takes one baker an hour to
make a cake. How long does it
take 3 bakers to make 3 cakes?
A: The amount of time it takes to
bake a cake is the same
regardless of how many cakes
are made and how many people
work on them. Therefore the
answer is still 1 hour. "Chain-of-Thought Prompting Elicits

Reasoning in Large Language Models"
Jan 2022

Prompt Crafting technique #2: chain-of-thought
reasoning

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

technique #2: chain-of-thought
reasoning

Q: It takes one baker an hour to
make a cake. How long does it
take 3 bakers to make 3 cakes?
A: Let's think step-by-step. The
amount of time it takes to bake a
cake is the same regardless of
how many cakes are made and
how many people work on them.
Therefore the answer is still 1
hour.

"Large Language Models are Zero-Shot
Reasoners" May 2022

Prompt Crafting

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916

Prompt Crafting
technique #3: document mimicry

IT Support Assistant
The following is a transcript
between an award winning IT
support rep and a customer.

Customer:
My cable is out! And I'm going to
miss the Superbowl!

Support Assistant:

What if you found this scrap of
paper on the ground?

What do you think the rest of the
paper would say?

Prompt Crafting
technique #3: document mimicry

IT Support Assistant
The following is a transcript
between an award winning IT
support rep and a customer.

Customer:
My cable is out! And I'm going to
miss the Superbowl!

Support Assistant:
Let's figure out how to diagnose
your problem…

It uses
markdown to
establish
structure

Document
type is

transcript It tells a story
to condition a

particular
response.

Prompt Crafting Intuition: LLMs are Dumb Mechanical Humans.

● LLMs understand better when you use familiar language and constructs.
● LLMs get distracted. Don't fill the prompt with lots of "just in case"

information.
● LLMs aren't psychic. If information is neither in training or in the prompt,

then they don't know it.
● If you look at the prompt and you can't make sense of it, a LLMs is hopeless.

Building LLM Applications
The hard

part!

● Collect context
● Rank context
● Trim context
● Assembling Prompt

Creating the Prompt

Creating the Prompt: Copilot Code Completion

// pkg/skills/search.go

// <consider this snippet from ../skill.go>
// type Skill interface {
// Execute(data []byte) (refs, error)
// }
// </end snippet>

package searchskill

import (
"context"
"encoding/json"
"fmt"
"strings"
"time"

)
type Skill struct {

█
}

type params struct {

file path

snippet from

open tab

current

document

cursor

● Collect context – current document, open tabs, symbols, file path
● Rank context – file path → current document → open tabs → symbols
● Trim context – drop open tab snippets; truncate current document
● Assembling Prompt

The Introduction of Chat

IT Support Assistant
The following is a transcript
between an award winning IT
support rep and a customer.

Customer:
My cable is out! And I'm going to
miss the Superbowl!

Support Assistant:
Let's figure out how to diagnose
your problem…

document

messages =
[{
 "role": "system"
 "content": "You are
an award winning
support staff
representative that
helps customers."
 },

 {"role": "user",
 "content":"My cable
is out! And I'm going
to miss the
Superbowl!"
 }
]

API
benefits

● Really easy for users to build
assistants.

○ System messages make
controlling behavior easy.

○ The assistant always
responds with an
complete thought and
then stops.

● Safety is baked in:
○ Assistant will (almost)

never respond with
insults or instructions to
make bombs

○ Assistant will (almost)
never hallucinate false
information.

○ Prompt injection is
(almost) impossible.

<|im_start|> system
You are an award winning IT
support rep. Help the user with
their request.<|im_stop|>

<|im_start|> user
My cable is out! And I'm going to
miss the Superbowl!<|im_stop|>

<|im_start|> assistant
Let's figure out how to diagnose
your problem…

(ChatGPT Nov 30, 2022)

https://openai.com/blog/chatgpt

● Agents can reach out into
the real world
○ Read information
○ Write information

● Model chooses to answer
in text or run a tool

● Tools can be called in
series or in parallel

● Tools can be interleaved
with user and assistant
text

The Introduction of Tools
{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get the weather",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "The city and state",
 },
 "unit": {
 "type": "string",
 "description": "degrees Fahrenheit
 or Celsius"
 "enum": ["celsius", "fahrenheit"]},
 },
 "required": ["location"],
 },
 },
}

Input:
{"role": "user",
 "content": "What's the weather
 like in Miami?"}

Function Call:
{"role": "assistant",
 "function": {
 "name": "get_weather",
 "arguments": '{
 "location": "Miami, FL"
 }'}

Real API request:
curl
http://weathernow.com/miami/FL?deg=f
{"temp": 78}

Function Response:
{ "role": "tool",
 "name": "get_weather",
 "content": "78ºF"}

(function calling Jun 13, 2022)

Assistant Response:
{"role": "assistant",
 "content": "It's a balmy 78ºF"}

http://weathernow.com/miami/FL
https://openai.com/blog/function-calling-and-other-api-updates

Building LLM Applications

Building LLM Applications:
Bag of Tools Agent

functions:
● getTemp()
● setTemp(degreesF)

user: make it 2 degrees warmer in here
assistant: getTemp()
function: 70ºF
assistant: setTemp(72)
function: success
assistant: Done!

user: actually… put it back
assistant: setTemp(70)
function: success
assistant: Done again, you fickle pickle!

● Collect context:
○ References – files, snippets, issues, that users attach or tools produce
○ Prior messages

● Rank, Trim and Assemble:
○ must fit:

■ system message
■ function definitions (if we plan to use them)
■ user's most recent message

○ fit if possible:
■ all the function calls and evals that follow
■ the references that belong to each message
■ historic messages (most recent being most important)

○ fallback to no-function usage if we can't fit with (causes Assistant to respond and turn to
complete)

Creating the Prompt: Copilot Chat

Tips for Defining Tools
● Don't have "too many" tools - look for evidence of collisions
● Name tools simply and clearly (and in typeScript format?)
● Don't copy/paste your API - keep arguments simple and few
● Keep function and arg descriptions short and consider what the model

knows
○ It probably understands public documentation.
○ It doesn't know about internal company acronyms.

● More on arguments
○ Nest arguments don't retain descriptions
○ You can use enum and default, but not minimum, maximum…

● Skill output – don't include extra "just-in-case" content
● Skill errors – when reasonable, send errors to model (validation errors)

Questions?

P.S. I'm also available for LLM
application consulting at
jfberryman@gmail.com

mailto:jfberryman@gmail.com

Questions?

